用户名: 密码: 验证码:
Deactivation of External Acid Sites of H-Mordenite by Modification with Lanthanide Oxides for the Isopropylation of Biphenyl and the Cracking of 1,3,5-Triisopropylbenzene and Cumene
详细信息    查看全文
文摘
The modification of H-mordenite (MOR) with lanthanide oxides La2O3, CeO2, Pr2O3, Sm2O3, Dy2O3, and Yb2O3 was examined for the deactivation of external acid sites and confirmed in the cracking of 1,3,5-triisopropylbenzene (TIPB) and cumene (IPB) and in the isopropylation of biphenyl (BP). The cracking of TIPB, which cannot enter the pores of MOR, shows that external acid sites were effectively deactivated by the modification of MOR with the lanthanide oxides in small amounts. Only the cracking of IPB over CeO2-modified MOR exhibited excellent catalytic activities, even at a 30 wt % metal loading, whereas the activities of other lanthanide oxide-modified MORs rapidly decreased as the loadings were increased because pore entrances became choked. The isomerization of 4,4鈥?diisopropylbiphenyl (4,4鈥?DIPB) during the isopropylation of BP at high temperatures such as 300 掳C was also effectively prevented by the modification of MOR with the lanthanide oxides. Particularly, CeO2-modified MOR remained highly active even at a 30 wt % loading. Other lanthanide oxides can deactivate the isomerization of 4,4鈥?DIPB at 5鈥?0 wt % loadings without significant loss of the activities at 300 掳C, while the activity was rapidly lost as the loading amount was increased. The physicochemical properties of lanthanide oxide-modified MORs indicate that the lanthanide oxides modify the surface properties of MOR. The amounts of N2, o-xylene, and NH3 adsorbed on MORs mostly remained high after CeO2 modification; however, they rapidly decreased when loadings of the other oxides increased. These results show that CeO2 remains the open pores at high loadings; however, the other oxides reduce the size of pore entrances as the loading is increased.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700