用户名: 密码: 验证码:
A Convenient Strategy for Designing a Soft Nanospace: An Atomic Exchange in a Ligand with Isostructural Frameworks
详细信息    查看全文
文摘
Direct observation of gas molecules confined in the nanospace of porous materials by single-crystal X-ray diffraction (SXRD) technique is significant because it leads to deep insight into the adsorption mechanism and the actual state of the adsorbents in molecular level. A recent study revealed that flexibility is one of the important factors to achieve periodic guest accommodation in the nanospace enabling direct observation of gas molecules. Here, we report a convenient strategy to tune the framework flexibility by just an atomic exchange in a ligand, which enables us to easily construct a soft nanospace as the best platform to study gas adsorption. Indeed, we succeeded to observe C2H2 and CO2 molecules confined in the pores of a flexible porous coordination polymer (PCP-N) in different configurations using SXRD measurement, whereas gas molecules in a rigid framework (PCP-C) isostructural to PCP-N were not seen crystallographically. The result of the coincident in situ powder X-ray diffraction and adsorption measurement for PCP-N unambiguously showed that the framework could flexibly transform to trap gas molecules with a commensurate fashion. In addition, for PCP-N, we found that the adsorbed gas molecules induced significant structural change involving dimensional change of the pore from one-dimensional to three-dimensional, and subsequently, additional gas molecules formed periodic molecular clusters in the nanospace.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700