用户名: 密码: 验证码:
Aqueous Methane in Slit-Shaped Silica Nanopores: High Solubility and Traces of Hydrates
详细信息    查看全文
  • 作者:Anh Phan ; David R. Cole ; Alberto Striolo
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2014
  • 出版时间:March 6, 2014
  • 年:2014
  • 卷:118
  • 期:9
  • 页码:4860-4868
  • 全文大小:570K
  • 年卷期:v.118,no.9(March 6, 2014)
  • ISSN:1932-7455
文摘
Equilibrium molecular dynamic simulations were employed to investigate the methane solubility in water confined between two parallel silica surfaces. The solid substrate was obtained from 尾-cristobalite; all nonbridging oxygen atoms were protonated. The resultant surface density of OH groups was 4.54 sites per nm2. The simulations were conducted at constant temperature, 300 K, and at increasing bulk methane pressure for pores of width 1.0 nm. For bulk systems, these thermodynamic conditions are outside the window of methane hydrates stability. Methane solubility in confined water was found to far exceed that in bulk systems. The increase in tangential pressure, observed under confinement, cannot solely explain the marked increase in solubility predicted by our simulations. Most likely, the structure of confined water favors the sequestration of methane. The excess chemical potential for methane was found to significantly decrease within the confined water compared with that in the bulk phase. On the basis of the cage adsorption hypothesis for hydrate nucleation, the predicted solubility of methane in the confined water (up to 0.05 mol fraction) is large enough to suggest the possible formation of methane hydrates. Indeed, analysis of simulation data shows the presence of amorphous cages of hydrogen-bonded water that host a single methane molecule. Within the limits of our simulations, these amorphous cages last for only short times. Perhaps the pores considered are too narrow to allow the formation of stable methane hydrates, and perhaps longer simulations would allow us to observe the formation of a hydrate nucleus. The large methane solubility in confined water predicted by our simulations might have consequences for hydraulic fracturing and other technological processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700