用户名: 密码: 验证码:
Peroxidative Oxidation of Lignin and a Lignin Model Compound by a Manganese SALEN Derivative
详细信息    查看全文
文摘
The manganese catalyst, (1R,2R)-(−)-[1,2-cyclohexanediamino-N,N′-bis(3,5-di-t-butylsalicylidene)]manganese(III) chloride, was used to activate H2O2 to oxidize organosolv lignin and a lignin model compound. Oxidation of the β-O-4 lignin model substrate 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (320.3 m/z) and poplar organosolv lignin resulted in both fragmentation and polymerization processes, likely via phenoxy radical formation. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) of the reaction products from the β-O-4 model substrate showed oligomers of the substrate with masses of 661.192, 979.355, and 1297.466 m/z that correspond to a dimer, trimer, and tetramer of the β-O-4 model substrate, respectively. Nuclear magnetic resonance (NMR) shows the formation of 5–5 diphenyl and 4-O-5 linkages in the β-O-4 model substrate oxidation products. Gel permeation chromatography (GPC) detected three peaks, corresponding to the β-O-4 model substrate and its oligomers. Products from the Mn-catalyzed oxidation of poplar organosolv lignin by H2O2 were analyzed by GPC, 31P NMR, and 13C NMR. GPC showed an increase by approximately four in the number-average molecular weight of organosolv lignin upon oxidation. NMR shows that polymerization occurs at positions consistent with phenoxy radical coupling, where the observed changes in guaiacyl subunit chemical shifts are most likely due to the formation of 5–5 biphenyl linkages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700