用户名: 密码: 验证码:
Beyond Affinity: Enthalpy鈥揈ntropy Factorization Unravels Complexity of a Flat Structure鈥揂ctivity Relationship for Inhibition of a tRNA-Modifying Enzyme
详细信息    查看全文
文摘
Lead optimization focuses on binding-affinity improvement. If a flat structure鈥揳ctivity relationship is detected, usually optimization strategies are abolished as unattractive. Nonetheless, as affinity is composed of an enthalpic and entropic contribution, factorization of both can unravel the complexity of a flat, on first sight tedious SAR. In such cases, the binding free energy of different ligands can be rather similar, but it can factorize into enthalpy and entropy distinctly. We investigated the thermodynamic signature of two classes of lin-benzopurines binding to tRNA鈭抔uanine transglycosylase. While the differences are hardly visible in the free energy, they involve striking enthalpic and entropic changes. Analyzing thermodynamics along with structural features revealed that one ligand set binds to the protein without inducing significant changes compared to the apo structure; however, the second series provokes complex adaptation, leading to a conformation similar to the substrate-bound state. In the latter state, a cross-talk between two pockets is suggested.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700