用户名: 密码: 验证码:
Interplay of Binding Stoichiometry and Recognition Specificity for the Interaction of MBD2b Protein and Methylated DNA Revealed by Affinity Capillary Electrophoresis Coupled with Laser-Induced Fluores
详细信息    查看全文
文摘
The methyl-CpG binding domain (MBD) family proteins can specifically bind methylated DNA sequences and thereby mediate gene transcription. In this study, we used neutral capillary electrophoresis coupled with laser-induced fluorescence to investigate the interactions of DNA and MBD2b, a model MBD family protein with the highest affinity. For this purpose, we synthesized 13 double-stranded oligonucleotides of varying length (20 bp to 80 bp) and of varying methylation density. The sequences of these oligonucleotides were adapted from a frequently methylated promoter region of human p16 INK4a gene. We demonstrate that multiple MBD2b proteins can bind to one DNA molecule with a DNA length-dependent binding stoichiometry. Each MBD2b protein can occupy 20 nucleotides in a bound DNA molecule regardless of the methylation status of DNA. By binding multiple MBD2b proteins (up to four protein molecules) to one dsDNA molecule (80 bp), methylated and unmethylated DNA were bound at similar percentages. Although the total amount of the DNA鈥揗BD2b complexes increases with increasing DNA length for both unmethylated and methylated DNA, the DNA鈥揗BD2b complexes of 1:1 display more than 10-fold higher affinity for methylated DNA (e.g., 40 bp DNA) accompanying a 20-fold lower dissociation rate constant. Hence, our study clarifies for the first time that the specificity of MBD2b to methylated DNA decreases as more MBD2b monomers binding to the same region of DNA. Additionally, this study opens a new venue to improve MBD protein-based assays for detecting DNA methylation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700