用户名: 密码: 验证码:
Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy
详细信息    查看全文
文摘
We report the observation of coherent light scattering from nanometer-sized gap regions in a nanofocusing scanning near-field optical microscope. When approaching a nanofocusing gold taper to the surface of a thin semitransparent gold film and detecting in transmission, we find a steep increase in scattering intensity over the last 5 nm in a near-field signal selected in k-space. This is confirmed as a signature of highly confined gap plasmons by detailed comparisons to finite element method simulations. The simulations reveal that the confinement is adjustable via the underlying probe–sample distance control scheme even to levels well below the taper apex radius. This controlled experimental realization of gap plasmons and the extraction of their signature in a scanning probe microscope pave the way toward broadband spectroscopy at and below single-nanometer length scales, using parallel detection at multiple wavelengths, for instance, in transient absorption or two-dimensional spectroscopy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700