用户名: 密码: 验证码:
Experimental and Computational X-ray Emission Spectroscopy as a Direct Probe of Protonation States in Oxo-Bridged MnIV Dimers Relevant to Redox-Active Metalloproteins
详细信息    查看全文
文摘
The protonation state of oxo bridges in nature is of profound importance for a variety of enzymes, including the Mn4CaO5 cluster of photosystem II and the Mn2O2 cluster in Mn catalase. A set of dinuclear bis-渭-oxo-bridged MnIV complexes in different protonation states was studied by K尾 emission spectroscopy to form the foundation for unraveling the protonation states in the native complex. The valence-to-core regions (valence-to-core XES) of the spectra show significant changes in intensity and peak position upon protonation. DFT calculations were performed to simulate the valence-to-core XES spectra and to assign the spectral features to specific transitions. The K尾2,5 peaks arise primarily from the ligand 2p to Mn 1s transitions, with a characteristic low energy shoulder appearing upon oxo-bridge protonation. The satellite K尾鈥?peak provides a more direct signature of the protonation state change, since the transitions originating from the 2s orbitals of protonated and unprotonated 渭-oxo bridges dominate this spectral region. The energies of the K尾鈥?features differ by 3 eV and thus are well resolved in the experimental spectra. Additionally, our work explores the chemical resolution limits of the method, namely, whether a mixed (渭-O)(渭-OH2) motif can be distinguished from a symmetric (渭-OH)2 one. The results reported here highlight the sensitivity of K尾 valence-to-core XES to single protonation state changes of bridging ligands, and form the basis for further studies of oxo-bridged polymetallic complexes and metalloenzyme active sites. In a complementary paper, the results from X-ray absorption spectroscopy of the same MnIV dimer series are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700