用户名: 密码: 验证码:
Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions
详细信息    查看全文
文摘
Low-cost microfluidic devices are desirable for many chemical processes; however, access to robust, inert, and appropriately structured materials for the inner channel wall is severely limited. Here, the shear force within confined microchannels was tuned through control of reactant solution fluid-flow and shown to dramatically impact nano- through microstructure growth. Combined use of experimental results and simulations allowed controlled growth of 3D networked Zn(OH)F nanostructures with uniform pore distributions and large fluid contact areas on inner microchannel walls. These attributes facilitated subsequent preparation of uniformly distributed Pd and PdPt networks with high structural and chemical stability using a facile, in situ conversion method. The advantageous properties of the microchannel based catalytic system were demonstrated using microwave-assisted continuous-flow coupling as a representative reaction. High conversion rates and good recyclability were obtained. Controlling materials nanostructure via fluid-flow-enhanced growth affords a general strategy to optimize the structure of an inner microchannel wall for desired attributes. The approach provides a promising pathway toward versatile, high-performance, and low-cost microfluidic devices for continuous-flow chemical processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700