用户名: 密码: 验证码:
Ultrafast Twisting of the Indoline Donor Unit Utilized in Solar Cell Dyes: Experimental and Theoretical Studies
详细信息    查看全文
文摘
Previous time-resolved measurements on D149, the most-studied dye of the indoline family, had shown a fast time-component of 20鈥?0 ps that had tentatively been attributed to structural relaxation. Using femtosecond transient absorption, we have investigated the isolated indoline donor unit (i.e., without acceptor group) and found an ultrafast decay characterized by two lifetimes of 3.5 and 23 ps. Density functional theory calculations show 蟺-bonding and 蟺*-antibonding character of the central ethylene group for the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), respectively. The LUMO is localized on the flexible vinyl-diphenyl region of the donor unit and a twisting process is assumed to occur as a deactivation process for the excited molecule. This is confirmed by multireference second-order perturbation theory (CASSCF/CASPT2) calculations of the lowest-lying excited state, in which it is shown that torsion of the ethylene bond to 96掳 and pyramidalization to ca. 100掳 lead to a conical intersection with the ground state. Embedded in a plastic matrix, where double bond rotation is hindered, the decay is slowed down to nanoseconds. We have also investigated the dyes D102, D131, and D149, possessing the same indoline donor unit, by femtosecond transient absorption and found a similar decay component. The ca. 20 ps deactivation channel in D-family dyes is thus attributed to a twisting process of the donor unit. The fluorescence quantum yields of this unit and D149 were measured, and from comparison, the competition of the discovered twisting deactivation channel to the radiative decay of the excited indoline dyes could be confirmed. Blocking this deactivation channel is expected to further increase efficiency for the indoline dyes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700