用户名: 密码: 验证码:
Engineered Mutations Change the Structure and Stability of a Virus-Like Particle
详细信息    查看全文
文摘
The single-coat protein (CP) of bacteriophage Q尾 self-assembles into T = 3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is lacking. To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various putative stabilizing interactions. Optimization of a procedure to incorporate fused CP subunits allowed for good control over the average number of covalent dimers in each VLP. We confirmed that the disulfide linkages are the most important stabilizing elements for the capsid and that acidic conditions significantly enhance the resistance of VLPs to thermal degradation. Interdimer interactions were found to be less important for VLP assembly than intradimer interactions. Finally, a single point mutation in the CP resulted in a population of smaller VLPs in three distinct structural forms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700