用户名: 密码: 验证码:
Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene
详细信息    查看全文
文摘
A maximum sodium capacity of ~35 mAh/g has hampered the use of crystalline carbon nanostructures for sodium ion battery anodes. We demonstrate that a diglyme solvent shell encapsulating a sodium ion acts as a “nonstick” coating to facilitate rapid ion insertion into crystalline few-layer graphene and bypass slow desolvation kinetics. This yields storage capacities above 150 mAh/g, cycling performance with negligible capacity fade over 8000 cycles, and ~100 mAh/g capacities maintained at currents of 30 A/g (~12 s charge). Raman spectroscopy elucidates the ordered, but nondestructive cointercalation mechanism that differs from desolvated ion intercalation processes. In situ Raman measurements identify the Na+ staging sequence and isolates Fermi energies for the first and second stage ternary intercalation compounds at ~0.8 eV and ~1.2 eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700