用户名: 密码: 验证码:
Kinetic Control of O2 Reactivity in H-NOX Domains
详细信息    查看全文
文摘
Transient absorption, resonance Raman, and vibrational coherence spectroscopies are used to investigate the mechanisms of NO and O2 binding to WT Tt H-NOX and its P115A mutant. Vibrational coherence spectra of the oxy complexes provide clear evidence for the enhancement of an iron–histidine mode near 217 cm–1 following photoexcitation, which indicates that O2 can be dissociated in these proteins. However, the quantum yield of O2 photolysis is low, particularly in the wild type (≲3%). Geminate recombination of O2 and NO in both of these proteins is very fast (∼1.4 × 1011 s–1) and highly efficient. We show that the distal heme pocket of the H-NOX system forms an efficient trap that limits the O2 off-rate and determines the overall affinity. The distal pocket hydrogen bond, which appears to be stronger in the P115A mutant, may help retard the O2 ligand from escaping into the solvent following either photoinduced or thermal dissociation. This, along with a strengthening of the Fe–O2 bond that is correlated with the significant heme ruffing and saddling distortions, explains the unusually high O2 affinity of WT Tt H-NOX and the even higher affinity found in the P115A mutant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700