用户名: 密码: 验证码:
Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance
详细信息    查看全文
文摘
This paper reports a facile and environmentally friendly approach to the preparation of highly efficient quantum dot-sensitized solar cells (QDSSCs) based on a combination of aqueous CuInS2 quantum dots (QDs) and thiol coadsorbents. The photovoltaic properties of the QDSSCs were found to be dependent on the type and concentration of the thiol coadsorbent. The incorporation of thiol coadsorbents results in improved JSC and VOC because (1) they provide disulfide reductants during the QD sensitization process and (2) the coadsorbent molecules are anchored on the TiO2 surface, thus affecting the movement of the conduction band of TiO2. To the best of the our knowledge, this is the first demonstrated use of various thiol coadsorbents as reducing agents in the fabrication of high-efficiency QDSSCs. CuInS2 QDSSCs fabricated with the assistance of thioglycolic acid coadsorbents exhibited efficiencies as high as 5.90%, which is 20 times higher than that of the control device without thiol coadsorbents (0.29%). In addition, the photovoltaic properties of a device fabricated using the colloidal CuInS2 QDs coated with different bifunctional linkers were investigated for comparison. The versatility of this facile fabrication process was demonstrated in the preparation of solar cells sensitized with aqueous AgInS2 or CdSeTe QDs. The AgInS2 QDSSC showed a conversion efficiency of 2.72%, which is the highest reported for Ag-based metal sulfides QDSSCs thus far.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700