用户名: 密码: 验证码:
Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography
详细信息    查看全文
  • 作者:Lijuan Jia ; Jiakai Ma ; Qiuyi Shi ; Chao Long
  • 刊名:Environmental Science & Technology
  • 出版年:2017
  • 出版时间:January 3, 2017
  • 年:2017
  • 卷:51
  • 期:1
  • 页码:522-530
  • 全文大小:561K
  • ISSN:1520-5851
文摘
Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403–443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293–328 K) and concentrations (P/Ps = 0.1–0.7) were predicted using Dubinin–Radushkevich (DR) equation based on Polany’s theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·Vmicro was used instead of Vmicro determined by N2 adsorption data at 77 K as the parameter q0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700