用户名: 密码: 验证码:
Radiative/Nonradiative Recombination Affected by Defects and Electron–Phone Coupling in CdWO4 Nanorods
详细信息    查看全文
文摘
Tungstates are important photoluminescence (PL) materials owing to their unique luminescence center. However, radiative or nonradiative recombination affected by defects and electron-phone coupling have not been well understood. In this paper, we have synthesized CdWO4 nanorods and studied its temperature-dependent PL spectrum from 20 to 300 K. Theoretical calculations demonstrate that Cd vacancy (VCd) and O vacancies (VO0, VO1+, and VO2+) induce extra levels in the band gap, by which the VCd, VO0, and VO1+ defects mainly contribute to the absorption in 0–4 eV region, while VO2+ causes the emission bands peaked at 490 nm in PL spectrum. Because of the broken symmetry of octahedron two possible types of lowest unoccupied molecular orbital (LUMO) appear and the transitions from the each LUMO to the highest occupied molecular orbital (HOMO) contribute to the emission at about 410 and 436 nm. The emission intensity of the peaks decreases with an increase in temperature due to the thermal quenching by nonradiative recombination. This work insights into the understanding of physical nature of emission and presents a detailed analysis of the electron transition behaviors in the wolframite-type monoclinic CdWO4, which can be used not only to explain the photoluminescence mechanism of CdWO4, but also for the structure design to obtain better emission properties in tungstates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700