用户名: 密码: 验证码:
Interplay of Molecular Orientation, Film Formation, and Optoelectronic Properties on Isoindigo- and Thienoisoindigo-Based Copolymers for Organic Field Effect Transistor and Organic Photovoltaic Applic
详细信息    查看全文
文摘
A systematic study on the effects of heteroarenes on the solid state structure and optoelectronic properties of isoindigo analogues, namely, PBDT-IIG and PBDT-TIIG, used in solution-processed organic field effect transistors (OFETs) and organic photovoltaics (OPVs) is reported. We discover that the optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, solubility, film morphology, charge carrier mobility, and solar cell performance are critically influenced by the heteroarenes in the acceptor subunits. PBDT-IIG exhibits good p-type OFET performance with mobility up to 1.03 脳 10鈥? cm2 V鈥? s鈥?, whereas PBDT-TIIG displays ambipolar mobilities of 渭h = 7.06 脳 10鈥? cm2 V鈥? s鈥? and 渭e = 2.81 脳 10鈥? cm2 V鈥? s鈥?. PBDT-IIG and PBDT-TIIG blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) yield promising power conversion efficiencies (PCEs) of 5.86% and 2.55%, respectively. The excellent mobility of PBDT-IIG can be attributable to the growing fraction of edge-on packing by the interfacial surface treatment. Although PBDT-TIIG could construct a long-range face-on packing alignment to meliorate its photocurrent in OPV applications, the low open-circuit voltage caused by its high-lying HOMO energy level and greater recombination demonstrates the trade-off between light absorption and solar cell performance. Nevertheless, PBDT-TIIG with a PCE of 2.55% is the highest reported PCE to date for the TIIG-based systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700