用户名: 密码: 验证码:
Hydrogen-Atom Abstraction from a Model Amino Acid: Dependence on the Attacking Radical
详细信息    查看全文
文摘
We have used computational chemistry to examine the reactivity of a model amino acid toward hydrogen abstraction by HO鈥? HOO鈥? and Br鈥? The trends in the calculated condensed-phase (acetic acid) free energy barriers are in accord with experimental relative reactivities. Our calculations suggest that HO鈥?is likely to be the abstracting species for reactions with hydrogen peroxide. For HO鈥?abstractions, the barriers decrease as the site of reaction becomes more remote from the electron-withdrawing 伪-substituents, in accord with a diminishing polar deactivating effect. We find that the transition structures for 伪- and 尾-abstractions have additional hydrogen-bonding interactions, which lead to lower gas-phase vibrationless electronic barriers at these positions. Such favorable interactions become less important in a polar solvent such as acetic acid, and this leads to larger calculated barriers when the effect of solvation is taken into account. For Br鈥?abstractions, the 伪-barrier is the smallest while the 尾-barrier is the largest, with the barrier gradually becoming smaller further along the side chain. We attribute the low barrier for the 伪-abstraction in this case to the partial reflection of the thermodynamic effect of the captodatively stabilized 伪-radical product in the more product-like transition structure, while the trend of decreasing barriers in the order 尾 > 纬 > 未 鈭?蔚 is explained by the diminishing polar deactivating effect. More generally, the favorable influence of thermodynamic effects on the 伪-abstraction barrier is found to be smaller when the transition structure for hydrogen abstraction is earlier.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700