用户名: 密码: 验证码:
Development of Core–Shell Nanostructures by In Situ Assembly of Pyridine-Grafted Diblock Copolymer and Transferrin for Drug Delivery Applications
详细信息    查看全文
文摘
We previously reported the coassembly of various proteins with poly(4-vinylpyridine) (P4VP) to form core–shell nanoparticles (CSNPs). However, P4VP suffers from its cytotoxicity and in vivo toxicity, which prohibit it from many potential biomedical applications. Here, pyridine-grafted diblock copolymer poly(caprolactone-graft-pyridine)-block-poly(caprolactone) [P(CL-g-Py)-b-PCL] was prepared through a combination of ring-opening polymerization and Cu(I) catalyzed azide–alkyne cycloaddition reaction. CSNPs could be readily constructed by the self-assembly of transferrin (Tf) and P(CL-g-Py)-b-PCL, which showed a narrower range of particle sizes, improved stability, and higher loading capacity for anticancer drug doxorubicin (DOX), compared with similar particles prepared from the coassembly of Tf and P4VP. Additionally, the drug-loaded Tf/P(CL-g-Py)-b-PCL CSNPs could effectively target MCF7 cancer cells via the binding of Tf to transferrin receptors (TfR).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700