用户名: 密码: 验证码:
Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor
详细信息    查看全文
文摘
For the first time, we demonstrate chromate (Cr(VI)) bioreduction using methane (CH4) as the sole electron donor in a membrane biofilm reactor (MBfR). The experiments were divided into five stages lasting a total of 90 days, and each stage achieved a steady state for at least 15 days. Due to continued acclimation of the microbial community, the Cr(VI)-reducing capacity of the biofilm kept increasing. Cr(VI) removal at the end of the 90-day test reached 95% at an influent Cr(VI) concentration of 3 mg Cr/L and a surface loading of 0.37g of Cr m–2 day–1. Meiothermus (Deinococci), a potential Cr(VI)-reducing bacterium, was negligible in the inoculum but dominated the MBfR biofilm after Cr(VI) was added to the reactor, while Methylosinus, a type II methanotrophs, represented 11%–21% of the total bacterial DNA in the biofilm. Synergy within a microbial consortia likely was responsible for Cr(VI) reduction based on CH4 oxidation. In the synergy, methanotrophs fermented CH4 to produce metabolic intermediates that were used by the Cr(VI)-reducing bacteria as electron donors. Solid Cr(III) was the main product, accounting for more than 88% of the reduced Cr in most cases. Transmission electron microscope (TEM) and energy dispersive X-ray (EDS) analysis showed that Cr(III) accumulated inside and outside of some bacterial cells, implying that different Cr(VI)-reducing mechanisms were involved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700