用户名: 密码: 验证码:
Optimizing Performance of Glycopeptide Capture for Plasma Proteomics
详细信息    查看全文
文摘
Selective capture of glycopolypeptides followed by release and analysis of the former glycosylation-site peptides has been shown to have promise for reducing the complexity of body fluids such as blood for biomarker discovery. In this work, a protocol based on capture of polypeptides containing a N-linked carbohydrate from human plasma using commercially available magnetic beads coupled with hydrazide chemistry was optimized and partially automated through the use of a KingFisher magnetic particle processor. Comparison of bead-based glycocapture at the protein-level vs the peptide-level revealed differences in the specificity, reproducibility, and absolute number of former glycosylation-site peptides detected. Evaluation of a range of capture and elution conditions led to an optimized protocol with a 24% intraday and 30% interday CV and a glycopeptide capture specificity of 99%. Depleting the plasma of 14 high abundance proteins improved detection sensitivity by approximately 1 order of magnitude compared to nondepleted plasma and resulted in an increase of 24% in the number of identified glycoproteins. The sensitivity of SPEG for detection of glycoproteins in depleted, non-fractionated plasma was found to be in the 10−100 pmol/mL range corresponding to glycoprotein levels ranging from 100's of nanograms/mL to 10's of micrograms/mL. Despite high capture specificity, the total number of glycoproteins detected and the sensitivity of SPEG in plasma is surprisingly limited.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700