用户名: 密码: 验证码:
Experimental and Numerical Investigation of Convective Drying of Single Coarse Lignite Particles
详细信息    查看全文
  • 作者:Kai Zhang ; Changfu You
  • 刊名:Energy & Fuels
  • 出版年:2010
  • 出版时间:December 16, 2010
  • 年:2010
  • 卷:24
  • 期:12
  • 页码:6428-6436
  • 全文大小:1322K
  • 年卷期:v.24,no.12(December 16, 2010)
  • ISSN:1520-5029
文摘
The mechanism of convective drying of single coarse lignite particles has important theoretical and practical significance for the development of the lignite drying technologies. The drying kinetics of single lignite particles in hot air were investigated experimentally with particles diameters of 20 and 30 mm. The experiments were performed at hot air velocities of 0.7 and 1.5 m/s and hot air temperatures of 100 and 140 °C. The results from these experiments show that the lignite particle size, the hot air temperature, and the velocity all significantly influence the drying. For the range of operating conditions investigated in this study, the drying time was reduced by increasing the temperature and velocity of the hot air flow and decreasing the particle size. The constant drying rate period was not obvious with the lignite characterized by a long decreasing drying rate. Both types of lignite had a good linear relationship between the drying rate and the dry-basis moisture content. A mathematical model for the drying of single particles was developed assuming local thermodynamic equilibrium to describe the multiphase flow in the porous particle with the energy and mass conservation equations to describe the heat and mass transfer during the drying. The drying model included convection of the free water, diffusion of the bound water, and convection and diffusion of the gas mixture in the lignite particle. The numerical results agree well with the experimental data verifying that the mathematical model can evaluate the drying performance of porous lignite particles. The effects of the drying conditions such as the particle size, the temperature, the absolute humidity, and the velocity of the drying air on the drying process were evaluated using the numerical model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700