用户名: 密码: 验证码:
Role of Anions in Aqueous Sol鈥揋el Process Enabling Flexible Cu(In,Ga)S2 Thin-Film Solar Cells
详细信息    查看全文
文摘
Recently, environmental-friendly, solution-processed, flexible Cu(In,Ga)(S,Se)2 devices have gained significant interest, primarily because the solution deposition method enables large-scale and low-cost production of photovoltaics, and a flexible substrate can be implemented on uneven surfaces in various applications. Here, we suggest a novel green-chemistry aqueous ink that is readily achievable through the incorporation of molecular precursors in an aqueous medium. A copper formate precursor was introduced to lower the fabrication temperature, provide compatibility with a polyimide plastic substrate, and allow for high photovoltaic performance. Through a comparative spectroscopic study on temperature-dependent chemical/crystal structural evolution, the chemical role of copper formate was elucidated, which led to the chalcopyrite framework that was appropriate to low-temperature annealed Cu(In,Ga)S2 absorber layers at 400 掳C. This Cu(In,Ga)S2 solar cell exhibited a power conversion efficiency of 7.04% on a rigid substrate and 5.60% on a polymeric substrate. Our cell on the polymeric substrate also demonstrated both acceptable mechanical flexibility and durability throughout a repeated bending test of 200 cycles.

Keywords:

flexible thin-film solar cells; CIGS; aqueous sol鈭抔el; low temperature processing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700