用户名: 密码: 验证码:
Nitrogen-Rich Carbon Nitride Hollow Vessels: Synthesis, Characterization, and Their Properties
详细信息    查看全文
文摘
Bulk quantities of nitrogen-rich graphitic carbon nitride are synthesized via a facile reactive pyrolysis process with a mixture of melamine and cyanuric chloride as the molecular precursors. Scanning electron microscopy and transmission electron microscopy studies show that micrometer-sized hollow vessels with high aspect ratios have been successfully elaborated without the designed addition of any catalyst or template. The composition of the prepared carbon nitride determined by combustion method is C3N4.91H1.00O0.22, with the N/C ratio to be 1.64, indicating a high nitrogen content. X-ray diffraction pattern reveals the regular stacking of graphene CNx monolayers along the (002) direction with the presence of turbostratic ordering of C and N atoms in the a−b basal planes. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy investigations provide further evidence for graphite-like sp2-bonded building blocks based on both triazine and heptazine ring units bridged by 3-fold coordinated nitrogen atoms. The optical properties of the sample are investigated by UV−vis absorption and photoluminescence spectroscopy, which show features characteristic of π−π* and n−π* electronic transitions involving lone pairs of nitrogen atoms. Thermogravimetric analysis curves of the synthesized graphitic carbon nitride hollow vessels show typical weight loss steps related to the volatilization of triazine and heptazine structural units.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700