用户名: 密码: 验证码:
Enhancement Mechanism of the Conversion Effficiency of Dye-Sensitized Solar Sells Based on Nitrogen-, Fluorine-, and Iodine-Doped TiO2 Photoanodes
详细信息    查看全文
文摘
We investigated the electronic structures of N-, F-, and I-doped anatase TiO2 to explore the enhancement mechanism of incident photon-to-current conversion efficiency (IPCE) in dye-sensitized solar cells (DSSCs) based on N-, F-, and I-doped anatase TiO2 photoanodes. The hybrid density functional calculation results indicate that n-type F and I doping is better than p-type N doping. The incorporation of I dopant is very favorable to improve the conductivity, the open-circuit voltage, and the visible-light absorption of anatase TiO2. Moreover, the I doping can facilitate the electron injection from the dye molecule to the TiO2 substrate by analyzing the calculated electronic properties of adsorbed dye/TiO2 complexes. As a result, the I doping can significantly enhance the IPCE of DSSCs. In addition, it is found that the metallic n-type doping on the Ti site of the TiO2 photoanode can be an effective approach to improve the performance of DSSCs. It is expected that this work can provide valuable information for the development of TiO2-based DSSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700