用户名: 密码: 验证码:
Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions
详细信息    查看全文
文摘
Graphene-based vertical heterostructures, particularly stacks incorporated with other layered materials, are promising for nanoelectronics. The stacking of two model Dirac materials, graphene and topological insulator, can considerably enlarge the family of van der Waals heterostructures. Despite good understanding of the two individual materials, the electron transport properties of a combined vertical heterojunction are still unknown. Here, we show the experimental realization of a vertical heterojunction between Bi2Se3 nanoplate and monolayer graphene. At low temperatures, the electron transport through the vertical heterojunction is dominated by the tunneling process, which can be effectively tuned by gate voltage to alter the density of states near the Fermi surface. In the presence of a magnetic field, quantum oscillations are observed due to the quantized Landau levels in both graphene and the two-dimensional surface states of Bi2Se3. Furthermore, we observe an exotic gate-tunable tunneling resistance under high magnetic field, which displays resistance maxima when the underlying graphene becomes a quantum Hall insulator.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700