用户名: 密码: 验证码:
Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells
详细信息    查看全文
文摘
Organometal halide perovskite solar cells (PSCs) have emerged as one of the most promising photovoltaic technologies with efficiencies exceeding 20.3%. However, device stability problems including hysteresis in current–voltage scans must be resolved before the commercialization of PSCs. Transient absorption measurements and first-principles calculations indicate that the migration of oxygen vacancies in the TiO2 electrode under electric field during voltage scans contributes to the anomalous hysteresis in PSCs. The accumulation of oxygen vacancies at the electrode/perovskite interface slows down charge extraction while significantly speeding up charge recombination at the interface. Moreover, nonadiabatic molecular dynamics simulations reveal that the charge recombination rates at the interface depend sensitively (with 1 order of magnitude difference) on the locations of oxygen vacancies. By intentionally reducing oxygen vacancies in the TiO2 electrode, we substantially suppress unfavorable hysteresis in the PSC devices. This work establishes a firm link between microscopic interfacial structure and macroscopic device performance of PSCs, providing important clues for future device design and optimization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700