用户名: 密码: 验证码:
Quantitative Proteomics Using SILAC Coupled to LC−MS/MS Reveals Changes in the Nucleolar Proteome in Influenza A Virus-Infected Cells
详细信息    查看全文
文摘
Influenza A virus (IAV) is a major human pathogen whose genotypic diversity results in unpredictable pandemics and epidemics. Interaction with the cell nucleus is essential to IAV infection, allowing recruitment of cellular components to facilitate virus replication. Viral proteins are also targeted to the nucleolus, a subnuclear structure involved in ribosomal biogenesis, RNA maturation, stress response, and control of cell growth, but the functional consequences of this are unclear. We took an unbiased approach to studying IAV−nucleolar interactions by using stable isotope labeling with amino acids in cell culture (SILAC) in conjunction with LC−MS/MS to quantify changes in the nucleolar proteome following infection with A/PR/8/34 (H1N1) and A/Udorn/72 (H3N2) strains of the virus. Only a minority of nucleolar proteins showed significant changes in abundance after infection; these alterations were mostly different between the two strains but could be validated by confocal microscopy of infected cells. Many of the affected proteins comprised functional groupings, including components of ribonuclease P, RNA polymerase I, the MLL1 histone methyltransferase complex, as well as nuclear paraspeckles and the RNA editing apparatus. This, as well as comparison with other viruses that cause changes in the nucleolar proteome, suggests that IAV targets specific nucleolar pathways.

Keywords:

influenza virus; nucleolus; quantitative proteomics; SILAC; LC−MS/MS; Rnase P; ADAR1; elongation factor gamma; WDR18; H1N1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700