用户名: 密码: 验证码:
A Boronate Affinity-Assisted SERS Tag Equipped with a Sandwich System for Detection of Glycated Hemoglobin in the Hemolysate of Human Erythrocytes
详细信息    查看全文
文摘
Phenylboronic acid-functionalized, Ag shell-coated, magnetic, monodisperse polymethacrylate microspheres equipped with a glycoprotein-sensitive sandwich system were proposed as a surface-enhanced Raman scattering (SERS) substrate for quantitative determination of glycated hemoglobin (HbA1c). The magnetization of the SERS tag and the formation of the Ag shell on the magnetic support were achieved using the bifunctional reactivity of newly synthesized polymethacrylate microspheres. The hemolysate of human red blood cells containing both HbA1c and nonglycated hemoglobin was used for determination of HbA1c. The working principle of the proposed SERS tag is based on the immobilization of HbA1c by cyclic boronate ester formation between glycosyl residues of HbA1c and boronic acid groups of magnetic polymethacrylate microspheres and the binding of p-aminothiophenol (PATP)-functionalized Ag nanoparticles (Ag NPs) carrying another boronic acid ligand via cyclic boronate ester formation via unused glycosyl groups of bound HbA1c. Then, in situ formation of a Raman reporter, 4,4′-dimercaptoazobenzene from PATP under 785 nm laser irradiation allowed for the quantification of HbA1c bound onto the magnetic SERS tag, which was proportional to the HbA1c concentration in the hemolysate of human erythrocytes. The sandwich system provided a significant enhancement in the SERS signal intensity due to the plasmon coupling between Ag NPs and Ag shell-coated magnetic microspheres, and low HbA1c concentrations down to 50 ng/mL could be detected. The calibration curve obtained with a high correlation coefficient between the SERS signal intensity and HbA1c level showed the usability of the SERS protocol for the determination of the HbA1c level in any person.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700