用户名: 密码: 验证码:
Cellulose Solubility in Ionic Liquid Mixtures: Temperature, Cosolvent, and Antisolvent Effects
详细信息    查看全文
文摘
Select ionic liquids (ILs) dissolve significant quantities of cellulose through disruption and solvation of inter- and intramolecular hydrogen bonds. In this study, thermodynamic solid–liquid equilibrium was measured with microcrystalline cellulose in a model IL, 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIm][DEP]) and mixtures with protic antisolvents and aprotic cosolvents between 40 and 120 °C. The solubility of cellulose in pure [EMIm][DEP] exhibits an asymptotic maximum of approximately 20 mass % above 100 °C. Solubility studies conducted on antisolvent mixtures with [EMIm][DEP] and [BMIm][Cl] indicate that protic solvents, ethanol, methanol, and water, significantly reduce the cellulose capacity of IL mixtures by 38–100% even at small antisolvent loadings (<5 mass %). Alternatively, IL–aprotic cosolvent (dimethyl sulfoxide, dimethylformamide, and 1,3-dimethyl-2-imidazolidinone) mixtures at mass ratios up to 1:1 enhance cellulose dissolution by 20–60% compared to pure [EMIm][DEP] at select temperatures. Interactions between the IL and molecular solvents were investigated by Kamlet–Taft solvatochromic analysis, FTIR, and NMR spectroscopy. The results indicate that preferential solvation of the IL cation and anion by co- and antisolvents impact the ability of IL ions to interact with cellulose thus affecting the cellulose dissolution capacity of IL–solvent mixtures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700