用户名: 密码: 验证码:
Nanopatterning Biomolecules by Block Copolymer Self-Assembly
详细信息    查看全文
文摘
The fabrication of sub-100 nm features with bioactive molecules is a laborious and expensive process. To overcome these limitations, we present a modular strategy to create nanostructured substrates (ca. 25 nm features) using functional block copolymers (BCPs) based on poly(styrene-b-ethylene oxide) to controllably promote or inhibit cell adhesion. A single type of BCP was functionalized with a peptide, a perfluorinated moiety, and both compounds, to tune nanoscale phase separation and interactions with NIH3T3 fibroblast cells. The focal adhesion formation and morphology of the cells were observed to vary dramatically according to the functionality presented on the surface of the synthetic substrate. It is envisioned that these materials will be useful as substrates that mimic the extracellular matrix (ECM) given that the adhesion receptors of cells can recognize clustered motifs as small as 10 nm, and their spatial orientation can influence cellular responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700