用户名: 密码: 验证码:
Bacteria鈥揚olymeric Membrane Interactions: Atomic Force Microscopy and XDLVO Predictions
详细信息    查看全文
文摘
Atomic force microscopy (AFM) in conjunction with a bioprobe developed using a polydopamine wet adhesive was used to directly measure the adhesive force between bacteria and different polymeric membrane surfaces. Bacterial cells of Pseudomonas putida and Bacillus subtilis were immobilized onto the tip of a standard AFM cantilever, and force measurements made using the modified cantilever on various membranes. Interaction forces measured with the bacterial probe were compared, qualitatively, to predictions by the extended Derjaguin鈥揕andau鈥揤erwey鈥揙verbeek (XDLVO) theory with steric interactions included. The XDLVO theory predicted attractive interactions between low energy hydrophobic membranes with high energy hydrophilic bacterium (P. putida). It also predicted a shallow primary maximum with the most hydrophilic bacterium, B. subtilis. Discrepancies between predictions using the XDLVO theory and theory require involvement of factors such as bridging effects. Differences in interaction between P. putida and B. subtilis are attributed to acid鈥揵ase interactions and steric interactions. P. putida is Gram negative with lipopolysaccharides present in the outer cell membrane. A variation in forces of adhesion for bacteria on polymeric membranes studied was interpreted in terms of hydrophilicity and interfacial surface potential calculated from physicochemical properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700