用户名: 密码: 验证码:
Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells
详细信息    查看全文
文摘
A simple optical model is presented to describe the influence of a planar luminescent down-shifting layer (LDSL) on the external quantum efficiencies of photovoltaic solar cells. By employing various visible light-emitting LDSLs based on CdTe quantum dots or CdSe/CdS core鈥搒hell quantum dots and tetrapods, we show enhancement in the quantum efficiencies of thin-film CdTe/CdS solar cells predominantly in the ultraviolet regime, the extent of which depends on the photoluminescence quantum yield (PLQY) of the quantum dots. Similarly, a broad enhancement in the quantum efficiencies of crystalline Si solar cells, from ultraviolet to visible regime, can be expected for an infrared emitting LDSL based on PbS quantum dots. A PLQY of 80% or higher is generally required to achieve a maximum possible short-circuit current increase of 16 and 50% for the CdTe/CdS and crystalline Si solar cells, respectively. As also demonstrated in this work, the model can be conveniently extended to incorporate LDSLs based on organic dyes or upconverting materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700