用户名: 密码: 验证码:
Key Chemical Factors of Arginine Finger Catalysis of F1-ATPase Clarified by an Unnatural Amino Acid Mutation
详细信息    查看全文
文摘
A catalytically important arginine, called Arg finger, is employed in many enzymes to regulate their functions through enzymatic hydrolysis of nucleotide triphosphates. F1-ATPase (F1), a rotary motor protein, possesses Arg fingers which catalyze hydrolysis of adenosine triphosphate (ATP) for efficient chemomechanical energy conversion. In this study, we examined the Arg finger catalysis by single-molecule measurements for a mutant of F1 in which the Arg finger is substituted with an unnatural amino acid of a lysine analogue, 2,7-diaminoheptanoic acid (Lyk). The use of Lyk, of which the side chain is elongated by one CH2 unit so that its chain length to the terminal nitrogen of amine is set to be equal to that of arginine, allowed us to resolve key chemical factors in the Arg finger catalysis, i.e., chain length matching and chemical properties of the terminal groups. Rate measurements by single-molecule observations showed that the chain length matching of the side-chain length is not a sole requirement for the Arg finger to catalyze the ATP hydrolysis reaction step, indicating the crucial importance of chemical properties of the terminal guanidinium group in the Arg finger catalysis. On the other hand, the Lyk mutation prevented severe formation of an ADP inhibited state observed for a lysine mutant and even improved the avoidance of inhibition compared with the wild-type F1. The present study demonstrated that incorporation of unnatural amino acids can widely extend with its high 鈥渃hemical鈥?resolution biochemical approaches for elucidation of the molecular mechanism of protein functions and furnishing novel characteristics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700