用户名: 密码: 验证码:
Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals
详细信息    查看全文
文摘
Shape-controlled synthesis of uniform noble metal nanoparticles (NPs) is crucial for the development of future plasmonic devices. The use of nanocrystals with well-defined morphologies and crystallinity as seed particles is expected to provide excellent shape control and monodispersity. We report the aqueous-based seed-mediated growth of monodisperse gold octahedra with wide range of sizes (50鈥?50 nm in side length) by reducing different amounts of HAuCl4 on preformed single crystalline gold nanorods using butenoic acid as reducing agent. Butenoic acid plays a key role as a mild reducing agent as well as favoring the thermodynamic control of the reaction. The uniformity of the as-prepared Au octahedra combined with the use of a microfluidic technique based on microevaporation will allow the self-assembly of octahedra into uniform 3D supercrystals. Additionally, these plasmonic substrates exhibit high and uniform SERS signals over extended areas with intensities increasing with the Au nanoparticle size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700