用户名: 密码: 验证码:
Application of Engineered Si Nanoparticles in Light-Induced Advanced Oxidation Remediation of a Water-Borne Model Contaminant
详细信息    查看全文
文摘
Surface-engineered amphiphilic polymer-coated silicon nanoparticles (SiNPs) were employed as photocatalysts to capture and degrade a model organic contaminant (methanol) in water. This study represents the first time SiNPs have been employed in the initiation of advanced oxidation processes that are commonly used to degrade organic constituents in industrial wastewaters. The quantum yield of photocatalytic methanol oxidation and the corresponding yield factor for the generation of active OH radicals are reported. The size and surface defect dependent photocatalytic activity of SiNPs was investigated. The yield factors (η) decreased with increasing particle size and reached impressive values that exceeded that of equivalent TiO2 nanoparticle systems by 3–4 times and are comparable to the robust UV/Cl2 and UV/H2O2 systems. The higher photocatalytic efficiency of SiNPs is attributed to the combined effects of quantum confinement, effective band gap, and surface states, among which surface states play a dominant role. SiNPs provide a potentially tunable, biologically inert, and robust nanoparticle system for photocatalytic oxidation of wastewater contaminants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700