用户名: 密码: 验证码:
Distinct Extracytoplasmic Siderophore Binding Proteins Recognize Ferrioxamines and Ferricoelichelin in Streptomyces coelicolor A3(2)
详细信息    查看全文
  • 作者:Prakash Patel ; Lijiang Song ; Gregory L. Challis
  • 刊名:Biochemistry
  • 出版年:2010
  • 出版时间:September 21, 2010
  • 年:2010
  • 卷:49
  • 期:37
  • 页码:8033-8042
  • 全文大小:1027K
  • 年卷期:v.49,no.37(September 21, 2010)
  • ISSN:1520-4995
文摘
Under iron limitation, the Gram-positive bacterium Streptomyces coelicolor A3(2) excretes three siderophores of the hydroxamate type: desferrioxamine B, desferrioxamine E, and coelichelin. These sequester iron from insoluble ferric hydroxides, and the resulting ferric complexes are believed to be transported into the cell via siderophore-binding proteins (SBPs) associated with ATP-binding cassette (ABC) transporters. Previous studies indicated that some of the genes in the desferrioxamine (des) and coelichelin (cch) biosynthetic clusters encode ABC transporter components required for efficient uptake of ferrioxamine E and ferricoelichelin, respectively, and a third ABC transporter gene cluster (cdt), not associated with siderophore biosynthesis genes, was implicated in the import of ferrioxamine B. In this study, the putative SBPs associated with these three gene clusters, DesE, CchF, and CdtB, were recombinantly overproduced in Escherichia coli and purified to homogeneity, and their binding affinity for cognate siderophores and noncognate siderophores was examined using fluorescence and circular dichroism spectroscopy. DesE was found to bind all of the ferric-tris-hydroxamates tested except ferricoelichelin, while CchF was found to bind only ferricoelichelin efficiently, providing further evidence that the cch cluster is a complete siderophore biosynthesis−export−uptake gene cluster. The picture was more complicated for CdtB, because it was found to be unstable in solution but was found to bind both ferrioxamine B and ferricoelichelin with high affinity. This was surprising because the cch cluster was previously reported to be necessary for efficient ferricoelichelin uptake. The remarkable specificity of the DesE and CchF proteins for different ferric-tris-hydroxamates raises intriguing questions about the molecular basis of their substrate specificity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700