用户名: 密码: 验证码:
Hydrothermally Enhanced Electrochemical Oxidation of High Concentration Refractory Perfluorooctanoic Acid
详细信息    查看全文
文摘
A green hydrothermally enhanced electrochemical oxidation (HTEO) technique is developed to treat the high concentration refractory perfluorooctanoic acid (PFOA) wastewater on boron-doped diamond (BDD) film electrode. Results show that HTEO can demonstrate higher degradation efficiency for PFOA than the normal electrochemical oxidation (EO) process, with the removal of PFOA, total organic carbon (TOC), and organic fluorine in the HTEO process increasing by 1.1, 1.8, and 2.1 times, respectively. The kinetics study indicates that the degradation of PFOA follows a first-order reaction in the HTEO process with the apparent reaction rate constant 3.1 times higher than that in the EO process. The higher degradation efficiency of PFOA is due to the hydrothermal enhancement in electrochemical properties of the electrode and solution. Compared with EO, during the HTEO process, the conductivity and ionic migration rate of the solution is improved by 540% and 60%, respectively. In addition, the Tafel slope is increased to 343 from 279 mV dec鈥?, indicating an inhibition effect of oxygen evolution reaction and a more effective oxidation of PFOA. In particular, the hydrothermal condition promotes a high formation rate of hydroxyl radical with the concentration almost 2 times of that in EO, which is considered the inner factor leading to the higher degradation efficiency. The density functional theory simulations demonstrate that the nonterminal C鈥揅 bonds in the main carbon chain can be easily destructed in the hydrothermal condition, as confirmed by the experimental detection of intermediates of C5F11COOH, C4F9COOH, C3F7COOH, C2F5COOH, CF3COOH, and some dicarboxylic acids. As a result, a reaction pathway is tentatively proposed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700