用户名: 密码: 验证码:
Theoretical Investigations of CO2 and H2 Sorption in an Interpenetrated Square-Pillared Metal鈥揙rganic Material
详细信息    查看全文
文摘
Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal鈥搊rganic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4鈥?dipyridylacetylene (dpa) rings and pillars of SiF62鈥?/sup> ions. This class of water stable MOMs shows great promise in practical gas sorption/separation with especially high selectivity for CO2 and variable selectivity for other energy related gases. Simulated CO2 sorption isotherms and isosteric heats of adsorption, Qst, at ambient temperatures were in excellent agreement with the experimental measurements at all pressures considered. Further, it was observed that the Qst for CO2 increases as a function of uptake in [Cu(dpa)2SiF6-i]. This suggests that nascently sorbed CO2 molecules within a channel contribute to a more energetically favorable site for additional CO2 molecules, i.e., in stark contrast to typical behavior, sorbate intermolecular interactions enhance sorption energetics with increased loading. The simulated structure at CO2 saturation shows a loading with tight packing of 8 CO2 molecules per unit cell. The CO2 molecules can be seen alternating between a vertical and horizontal alignment within a channel, with each CO2 molecule coordinating to an equatorial fluorine MOM atom. Calculated H2 sorption isotherms and Qst values were also in good agreement with the experimental measurements in [Cu(dpa)2SiF6-i]. H2 saturation corresponds to 10 H2 molecules per unit cell for the studied structure. Moreover, there were two observed binding sites for hydrogen sorption in [Cu(dpa)2SiF6-i]. Simulations of a 30:70 CO2/H2 mixture, typical of syngas, in [Cu(dpa)2SiF6-i] showed that the MOM exhibited a high uptake and selectivity for CO2. In addition, it was observed that the presence of H2O had a negligible effect on the CO2 uptake and selectivity in [Cu(dpa)2SiF6-i], as simulations of a mixture containing CO2, H2, and small amounts of CO, N2, and H2O produced comparable results to the binary mixture simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700