用户名: 密码: 验证码:
Vertically Aligned Carbon Nanotubes on Carbon Nanofibers: A Hierarchical Three-Dimensional Carbon Nanostructure for High-Energy Flexible Supercapacitors
详细信息    查看全文
文摘
Hierarchical structures enable high-performance power sources. We report here the preparation of vertically aligned carbon nanotubes directly grown on carbon nanofibers (VACNTs/CNFs) by combining electrospinning with pyrolysis technologies. The structure and morphology of VACNTs/CNFs could be precisely tuned and controlled by adjusting the percentage of reactants. The desired VACNTs/CNFs could not only possess high electric conductivity for efficient charge transport but could also increase surface area for accessing more electrolyte ions. When using an ionic liquid electrolyte, VACNTs/CNFs-based electric double layer (EDL) flexible supercapacitors can deliver a high specific energy of 70.7 Wh/kg at a current density of 0.5 A/g and at 30 掳C, and an ultrahigh-energy density of 98.8 Wh/kg at a current density of 1.0 A/g and at 60 掳C. Even after 20鈥?00 charging/discharging cycles, the EDL capacitor still retains 97.0% of the initial capacitance. The excellent performance highlights the important role of the branched VACNTs in storing and accumulating charge and the CNF backbone in transporting charge, thereby boosting both power density and energy density.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700