用户名: 密码: 验证码:
Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles
详细信息    查看全文
文摘
Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10–4 S cm–1). The ionic conductivity maintains 3.6 × 10–4 S cm–1 after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10–4 S cm–1 and drops to 2.39 × 10–5 S cm–1 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700