用户名: 密码: 验证码:
Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries
详细信息    查看全文
文摘
Nanocomposites consisting of ultrafine, cobalt carbonate nanoneedles and 3D porous graphene aerogel (CoCO3/GA) are in situ synthesized based on a one-step hydrothermal route followed by freeze-drying. A further heat treatment produces cobalt oxide nanoparticles embedded in the conductive GA matrix (Co3O4/GA). Both the composite anodes deliver excellent specific capacities depending on current density employed: the CoCO3/GA anode outperforms the Co3O4/GA anode at low current densities, and vice versa at current densities higher than 500 mA g鈥?. Their electrochemical performances are considered among the best of similar composite anodes consisting of CoCO3 or Co3O4 active particles embedded in a graphene substrate. The stable multistep electrochemical reactions of the carbonate compound with a unique nanoneedle structure contribute to the excellent cyclic stability of the CoCO3/GA electrode, whereas the highly conductive networks along with low charge transfer resistance are responsible for the high rate performance of the Co3O4/GA electrode.

Keywords:

graphene aerogel; cobalt carbonate; cobalt oxide; hydrothermal process; anode; Li-ion battery

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700