用户名: 密码: 验证码:
Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process
详细信息    查看全文
文摘
Controlling the crystal quality and growth orientation of high performance III鈥揤 compound semiconductor nanowires (NWs) in a large-scale synthesis is still challenging, which could restrict the implementation of nanowires for practical applications. Here we present a facile approach to control the crystal structure, defects, orientation, growth rate and density of GaAs NWs via a supersaturation-controlled engineering process by tailoring the chemical composition and dimension of starting AuxGay catalysts. For the high Ga supersaturation (catalyst diameter < 40 nm), NWs can be manipulated to grow unidirectionally along 111 with the pure zinc blende phase with a high growth rate, density and minimal amount of defect concentration utilizing the low-melting-point catalytic alloys (AuGa, Au2Ga, and Au7Ga3 with Ga atomic concentration > 30%), whereas for the low Ga supersaturation (catalyst diameter > 40 nm), NWs are grown inevitably with a mixed crystal orientation and high concentration of defects from high-melting-point alloys (Au7Ga2 with Ga atomic concentration < 30%). In addition to the complicated control of processing parameters, the ability to tune the composition of catalytic alloys by tailoring the starting Au film thickness demonstrates a versatile approach to control the crystal quality and orientation for the uniform NW growth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700