用户名: 密码: 验证码:
Comparative Structural Analysis and Kinetic Properties of Lactate Dehydrogenases from the Four Species of Human Malarial Parasites
详细信息    查看全文
文摘
Parasite lactate dehydrogenase (pLDH) is a potential drug target for new antimalarials owingto parasite dependence on glycolysis for ATP production. The pLDH from all four species of humanmalarial parasites were cloned, expressed, and analyzed for structural and kinetic properties that might beexploited for drug development. pLDH from Plasmodium vivax, malariae, and ovale exhibit 90-92%identity to pLDH from Plasmodium falciparum. Catalytic residues are identical. Resides I250 and T246,conserved in most LDH, are replaced by proline in all pLDH. The pLDH contain the same five-aminoacid insert (DKEWN) in the substrate specificity loops. Within the cofactor site, pLDH from P. falciparumand P. malariae are identical, while pLDH from P. vivax and P. ovale have one substitution. Homologymodeling of pLDH from P. vivax, ovale, and malariae with the crystal structure of pLDH from P.falciparum gave nearly identical structures. Nevertheless, the kinetic properties and sensitivities to inhibitorstargeted to the cofactor binding site differ significantly. Michaelis constants for pyruvate and lactate differ8-9-fold; Michaelis constants for NADH, NAD+, and the NAD+ analogue 3-acetylpyridine adeninedinucleotide differ up to 4-fold. Dissociation constants for the inhibitors differ up to 21-fold. Moleculardocking studies of the binding of the inhibitors to the cofactor sites of all four pLDH predict similarorientations, with the docked ligands positioned at the nicotinamide end of the cofactor site. pH studiesindicate that inhibitor binding is independent of pH in the pH 6-8 range, suggesting that differences indissociation constants for a specific inhibitor are not due to altered active site pK values among the fourpLDH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700