用户名: 密码: 验证码:
Effective Schottky Barrier Height Lowering of Metal/n-Ge with a TiO2/GeO2 Interlayer Stack
详细信息    查看全文
文摘
A perfect ohmic contact formation technique for low-resistance source/drain (S/D) contact of germanium (Ge) n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) is developed. A metal–interlayer–semiconductor (M–I–S) structure with an ultrathin TiO2/GeO2 interlayer stack is introduced into the contact scheme to alleviate Fermi-level pinning (FLP), and reduce the electron Schottky barrier height (SBH). The TiO2 interlayer can alleviate FLP by preventing formation of metal-induced gap states (MIGS) with its very low tunneling resistance and series resistance and can provide very small electron energy barrier at the metal/TiO2 interface. The GeO2 layer can induce further alleviation of FLP by reducing interface state density (Dit) on Ge which is one of main causes of FLP. Moreover, the proposed TiO2/GeO2 stack can minimize interface dipole formation which induces the SBH increase. The M–I–S structure incorporating the TiO2/GeO2 interlayer stack achieves a perfect ohmic characteristic, which has proved unattainable with a single interlayer. FLP can be perfectly alleviated, and the SBH of the metal/n-Ge can be tremendously reduced. The proposed structure (Ti/TiO2/GeO2/n-Ge) exhibits 0.193 eV of effective electron SBH which achieves 0.36 eV of SBH reduction from that of the Ti/n-Ge structure. The proposed M–I–S structure can be suggested as a promising S/D contact technique for nanoscale Ge n-channel transistors to overcome the large electron SBH problem caused by severe FLP.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700