用户名: 密码: 验证码:
A 3D Oxalate-Based Network as a Precursor for the CoMn2O4 Spinel: Synthesis and Structural and Magnetic Studies
详细信息    查看全文
文摘
A novel heterometallic oxalate-based compound of the formula {[Co(bpy)3][Mn2(C2O4)3]路H2O}n (1; bpy = 2,2鈥?bipyridine) was synthesized and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction (XRD), and magnetization measurement. The molecular structure of 1 is made of a three-dimensional (3D) anionic network, [Mn2(C2O4)3]n2n鈥?/sup>, and tris-chelated cations [Co(bpy)3]2+ occupying the vacancies of the framework. Splitting between the zero-field-cooled (ZFC) and field-cooled (FC) branches of susceptibility below the small peak at 13 K indicates magnetic ordering. Compound 1 was used as a single-source precursor for the formation of the mixed-metal oxide CoMn2O4. This conversion via thermal decomposition was explored by thermal analysis (TGA and DTA), IR spectroscopy, powder XRD, and magnetic susceptibility measurement. From refined structural parameters, it could be seen that the spinel obtained by the thermal treatment of 1 at 800 掳C is characterized by the inversion parameter 未 = 21%, and therefore the structural formula at room temperature can be written as tet[Co0.79Mn0.21]oct[Co0.105Mn0.895]2O4. The temperature dependence of magnetization for CoMn2O4 points to at least three magnetic phases: the ferrimagnetic state is observed below 83 K, and up to 180 K blocking of the magnetic moments of nanocrystallites of 31 nm appears, transforming to paramagnetic-like behavior above 180 K. Microstructural characterization of the CoMn2O4 sample was carried out by means of XRD line-broadening analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700