用户名: 密码: 验证码:
Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids
详细信息    查看全文
文摘
Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the accuracy of the method by accounting for all possible two-body and three-body interactions. In this work a comprehensive application of the FMO approach in combination with a second order of Møller–Plesset perturbation theory method, MP2, is presented for multiscale clusters of ionic liquids such as [C1mim]X, [C1mpyr]X, [C2py]X, and [NMe4]X, where X = chloride and tetrafluoroborates, BF4, with the clusters varying in size from 4, 8, 16, to 32 ion pairs. Reliable cutoff criteria for the inclusion of two-body and three-body interactions are identified for both HF energy and MP2 correlation energy to achieve the desired accuracy of 1 kJ mol–1. The importance of two-body and three-body interactions in ionic liquids is also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700