用户名: 密码: 验证码:
Morphological Control over ZnO Nanostructures from Self-Emulsion Polymerization
详细信息    查看全文
文摘
Three different morphologies of ZnO nanostructures, such as nanospheres, nanorods, and nanoribbons, were controlled by tuning the ratio of the Zn2+ precursor to the 4VP monomer when polymerized in aqueous medium utilizing self-emulsion polymerization. The amphiphilic homopolymer (P4VP) acts as a template to form the ZnO/P4VP nanocomposite. The aspect ratio of the nanostructures is strongly dependent on the molar concentration of the Zn2+ precursor and becomes higher as its concentration increases. This results in different morphologies that are consistently repeatable. Pure ZnO was obtained from the ZnO/P4VP nanocomposites by calcination at 400 °C or by solvent washing. The calcination of the nanocomposties resulted in different morphologies, such as spherical, corolla shaped, and nanosheets. In addition, hexagonal nanoblocks, nanorods, and nanoribbons were observed when the polymer was removed from the nanocomposites by washing with chloroform. Removing polymer by solvent washing is a very easy, cost-effective method and has the potential for mass production of pure and highly crystalline ZnO nanostructures with known and controllable morphologies. The nanocomposites and pure ZnO nanostructures obtained after polymer removal were characterized by transmission electron microscopy, high resolution transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses, which confirmed the crystalline nature of the ZnO.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700