用户名: 密码: 验证码:
Oligonucleotide−Oligospermine Conjugates (Zip Nucleic Acids): A Convenient Means of Finely Tuning Hybridization Temperatures
详细信息    查看全文
文摘
Synthesis of oligonucleotide probes and control of their hybridization temperature are key aspects of polymerase chain reaction (PCR)-based detection of genetic sequences. A straightforward means to approach the last goal is to decrease the repulsion between the polyanionic probe and target strands. To this end, we have developed a versatile automated synthesis of oligonucleotide−oligospermine derivatives that gave fast access to a large variety of compounds. Plots of their hybridization temperatures Tm vs overall charge provided a measure of the impact of interstrand phosphate repulsion (and of spermine-mediated attraction) on the main driving force of duplex formation, i.e., base pairing. It showed that stabilization brought about by excess cationic charges can be of larger absolute magnitude than interstrand repulsion, even in high salt media. Base sequence and conjugation site (3′ or 5′) hardly influenced the effect of spermine on Tm. In typical PCR probe conditions, the Tm increased linearly with the number of grafted spermines (e.g., 6.2 °C per spermine for a decanucleotide probe). The large data set of Tm vs number of spermines and oligonucleotide length allowed us to empirically derive a simple mathematical relation that is accurately predicting the Tm of any oligonucleotide−oligospermine derivative. Zip nucleic acids (ZNA) are thus providing an interesting alternative to locked nucleic acids (LNA) or minor groove binders (MGB) for raising the stability of 8−12-mer oligonucleotides up to ca. 70 °C, the level required for quantitative PCR experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700