用户名: 密码: 验证码:
β-O-4 Bond Cleavage Mechanism for Lignin Model Compounds over Pd Catalysts Identified by Combination of First-Principles Calculations and Experiments
详细信息    查看全文
文摘
Lignin in lignocellulosic biomass is the only renewable source for aromatic compounds, and effective valorization of lignin remains a significant challenge in biomass conversion processes. We have performed density functional theory calculations and experiments to investigate the cleavage mechanism of the C–O ether bond in the lignin model compound 2-phenoxy-1-phenylethanol with a β-O-4 linkage over a Pd(111) catalyst surface model. We propose the favorable reaction pathway to proceed as follows: the dilignol reactant gets dehydrogenated first on the α-carbon and then on the −OH group to generate its corresponding ketone 2-phenoxy-1-phenylethanone; the ketone continues to get dehydrogenated on the β-carbon by first a equilibrated keto–enol tautomerization to its enol form and then −OH dehydrogenation; the C–O ether bond cleavage happens afterward, leading to one-aromatic-ring surface intermediates followed by hydrogenation to yield acetophenone and phenol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700